
Abstract— DFA (Deterministic Finite Automata) is designed for
the set of customized tokens that we have taken. A grammar in
compiler is a set rule that specify how sentences can be
structured with the terminals, non-terminals, the set of
productions and the start symbol. CFG (Context Free
Grammar) is used in compiler for parsing. This paper presents
the steps to convert a high level language written according to
our customization into assembly language. It also presents what
is a compiler, its phases and functions. Basically, the compiler
passes through the six phases but here only the implementation
through three phases are shown, i.e Lexical Analyzer, Syntax
Analyzer and Target Code Generation. The Target Code
generated here is in Assembly Language.

Index Terms— Compiler, phases of compiler, DFA, CFG,
Assembly Code Generation

I. INTRODUCTION

A compiler is a program that converts a source program

written in high level programming language into target
program which is machine understandable language. The
most common reason for converting source code is to create
an executable program. Generally, the target program is an
executable program that can be used by the user to process
the input and produce the related output. The compiler works
with two prime features of the language syntax and
semantics. If the compiled program can run on a computer
whose CPU or operating system is different from the one on
which compiler runs, the compiler is known as a cross-
compiler. More generally, compilers are the specific type
of translator. A program that translates from a low level
language to a higher level language is a decompiler.

II. PHASES OF COMPILER

Each phase transforms the source program from one
representation into another representation. They communicate
with error handlers and symbol table. But in this customized
compiler, we are going through only necessary three phases
of the compiler i.e. Lexical Phase, Syntax Phase and Target
Code Generation.

There are six phases of compiler.

Fig. 2 Phases of Compiler

Phase I (Lexical Analyzer) - This phase reads the source
code as a stream of characters and converts it into meaningful
lexemes. A token describes a pattern of characters having
same meaning in the source program (such as identifiers,
operators, keywords, and numbers).

Phase II (Syntax Analyzer) – This phase generates the syntax
tree according to the already known CFG. A syntax analyzer
is also called a parser. A parse tree describes the syntactic
structure.

Phase III (Semantic Analyzer) – This phase checks the
source program for semantic errors and collects the type of
information for the code generation. The main functionality is
type checking.

Govind Prasad Arya, Neha Sohail, Pallavi Ranjan, Priya Kumari & Shabina Khatoon
Department of Computer Science & Engineering, Shivalik College of Engineering

Affiliated to Uttarakhand Technical University, Dehradun

Design and Implementation of a Customized
Compiler

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 342-346

www.ijcsit.com 342

Phase IV (ICG) – ICG stands for Intermediate Code
Generator. After semantic analysis intermediate code is
generated, which is in between high level language and
machine language. These codes are generally machine
architecture independent, but the level of intermediates code
is close to the level of machine codes.

Phase V(Code Optimizer) – This phase removes unnecessary
code lines, and arranges the sequence of statements in order
to speed up the program execution without wasting resources
(CPU, Memory).

Phase VI (Code Generation) – In this phase the code
generator takes the optimized representation of intermediate
code and converts it into machine understandable code
(Target Code).

A. Abbreviations and Acronyms

CFG -Context Free Grammar
ICG -Intermediate Code Generator
DFA -Deterministic Finite Automata
LMD -Left Most Derivative
RMD -Right Most Derivative

III. DESIGNING OF LEXICAL ANALYZER

Steps for designing the customized compiler:

i. Draw the DFA (Deterministic Finite Automata) for the

tokens, digits and all other customized units taken in
our compiler.

ii. Combine all the individual DFAs into one single DFA.
iii. Implement the code of the Lexical Analyzer as per the

combined DFA.
iv. Now, write the grammar (Context Free Grammar) for

the syntax analyzer.
v. Check and parse the grammar as dry run for the

tokens.
vi. Implement the code of the Syntax Analyzer as per the

grammar.
vii. Study the assembly language.

viii. Implement the target code for the given program.
ix. The target code is in assembly language.

DFA
Following are the few DFAs for our customized compiler as
keywords, operators, special symbols, digits and identifiers.

A. DFA for Keyword

B. DFA for Operator

C. DFA for Special Symbol

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 342-346

www.ijcsit.com 343

D. DFA for Digits

E. DFA for Identifiers

F. Combined DFA

IV. PARSING
There are two types of Parsing Approaches.

1. Top down Parsing

Top down parsing starts from the root of the parse tree. It is
labeled with the start symbol of the grammar. The reason
why top down parsing seeks LMD (Left Most Derivation) for
an input string s and not the RMD (Right Most Derivation) is
that the input string s is scanned by the parser from left to
right, one symbol/token at a time, and the LMD generate the

leaves of the parse tree in left to right order, which matches
the input scan order.

There are two types of Top down Parsing-

a. Recursive Descent Parsing
Recursive descent is a top-down parsing technique that
constructs the parse tree from the top and the input is read
from left to right. It uses procedures for every terminal and
non-terminal entity. This parsing technique recursively parses
the input to make a parse tree, which may or may not require
back-tracking. But the grammar associated with it (if not left
factored) cannot avoid back-tracking.

b. Predictive Parsing
Predictive parser is a recursive descent parser, which has the
capability to predict which production should be used to
replace the input string. The predictive parser does not suffer
from the issue of backtracking. The parser refers to
the parsing table to take any decision on the input.

2. Bottom up Parsing
It can be defined as an attempt to reduce the input string s to
the start symbol of the grammar by tracing out the RMD of s
in reverse. This is equivalent to constructing a parse tree for
the input string s by starting with the leaves and proceeding
towards the root i.e., attempting to construct the parse tree
from the bottom up. The reason why Bottom up Parsing
traces out the RMD of an input string s in reverse and not the
LMD is because the parser scans the input string s from left
to right, one symbol/token at a time.

V. GRAMMAR DESIGN FOR PARSING

We have used one of the Top Down Parsing Technique i.e.
Recursive Descent Parsing for the Context Free
Grammar.
The context free grammar is written for our compiler as
follows:
The starting symbol is M (non terminal), with the productions
as follows:

M → MASTER () {S}
S → DS |DCS |LCS |BCS |IOS |IDS |E |FC |empty
DS → DT sp id DS1|id DS1
DT → INT |CHR |FLT
DS1 → =DS2 |,DS1 |id DS1|;
DS2 → 0DS2 |1DS2 |2DS2 |3DS2 |4DS2 |5DS2 |6DS2

|7DS2 |8DS2 |9DS2 |'id' DS1 |.DS2 |DS1
DCS → EITHER (CE) {S}T
CE → id Orel E' E''
Orel → <= |>= |!= |== |< |> |% E' Orel
E' → 0E' |1E' |2E' |3E' |4E' |5E' |6E' |7E' |8E' |9E' |id
E'' → Olog CE | empty
Olog → || | &&

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 342-346

www.ijcsit.com 344

T → OR{S} | empty
LCS → WHILE (CE){S}
BCS → id (A){S}
A → DT sp id A |,A |empty
FC → id (A1);
A1 → idA1 |,A1 |0A1 |1A1 |2A1 |3A1 |4A1 |5A1 |6A1

|7A1 |8A1 |9A1 |empty
IOS → PRINT (" "P); |SCAN("FS"SC);
P → id P |empty
FS → %d FS |%c FS |%f FS |empty
SC → ,&id SC |empty
IDS → id Oid;
Oid → ++|--
E → id=YZ;
Y → D Op id Y |id Op D Y |id |D |D Op D Y |id Op id Y
Z → Op id Y| Op D Y |empty
D → 0 |1 |2 |3 |4 |5 |6 |7 |8 |9
Op → + |- |/ |* |%

Where;
M ‐ Start symbol

S ‐ Statement

DS ‐ Declarative statement

DCS ‐ Decision control statement

LCS ‐ Loop control statement

BCS ‐ Branch control statement

IOS ‐ Input output statement

IDS ‐ Increment/Decrement statement

FC ‐ Function call

E ‐ Expression

DT ‐ Data type

DS1 ‐ Declarative statement1

DS2 ‐ Declarative statement2

CE ‐ Conditional expression

Orel ‐ Relational operator

Olog ‐ Logical operator

E’ ‐ Expression1

E’’ ‐ Expression2

T ‐ Terminal

A ‐ Argument list

A1 ‐ Function call argument list (call by value)

P ‐ Printing the value of anything

FS ‐ Format specifier

SC ‐ Scanning the identifier

Oid ‐ Increment/ Decrement operator

Y ‐ Any type of valid expression

Z ‐ Continuation of the expression if it is long

D ‐ Digits

Op ‐ Arithmetic operator

VI. WORKING OF OUR COMPILER

The working of the compiler was divided into three

phases:

A. Lexical Phase
The implementation of the Lexical Phase started with the

designing of the DFAs for the tokens and then combining

them into a single DFA. Then according to the DFA, we

designed procedures for each non‐terminals and used

recursion for its implementation.

After successfully running the code, the output will

display the result like‐

Valid keyword MASTER found

Valid digit 23 found

Valid special symbol { found

Valid operator + found

Valid identifier d found

As according to the tokens written in the program file.

B. Syntax Phase
After Completion of Lexical phase we started to work on the
grammar. We wrote our own Context Free Grammar which is
in the form of LL (1) grammar.
Then we did parsing of the input symbols in the text file one
by one as a testing phase. Later on, according to the non-
terminals in the grammar, we wrote the program code using
various functions in place of non-terminals recursively.
The successful completion of the syntax phase will yield-
Closing found, Syntactically Correct

C. Target Code Generation
Finally, after completion of the first two phases, the tokens
were accepted as valid tokens and results in syntactically
correct output. Then we moved to the final phase of the
compiler. The target code was generated in assembly
language.

VII. TESTING

The following example is shown with the help of two files.
One is the input file and the other is the target file. The source
code is written in the input file which has to be converted
into the assembly language and the output is being displayed
in the target file.

Fig. 7.1 Input File

MASTER ()

{

INT a=2, b=4, c;

c=a*b;

}

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 342-346

www.ijcsit.com 345

Fig. 7.2 Target File

VIII. CONCLUSION

Here we conclude from the above example that the source
code in the high level language in the input file is
successfully being converted to assembly language in the
target file after passing through all the three phases. This set
of implementation is fixed for an expression. It can further be
extended and can be made flexible for any type of source
code.

ACKNOWLEDGMENT

It is a great pleasure to express our profound sense of
gratitude and reverence to our all through guide and teacher
Mr. Govind Prasad Arya, Assistant. Professor,
Department of Computer Science & Engineering,
Shivalik College of Engineering, Dehradun, Uttarakhand.
He was always a source of encouragement and inspiration,
and constantly guided us for the accomplishment of this task
with meticulous care. We owe to him the most, to have had
the opportunity to accomplish the work under his guidance.

REFERENCES
 [1] Jens Nilsson, Proceedings of the 11th International Conference on

Parsing Technologies (IWPT), Paris, October 2009 c Association for
Computational Linguistics.

[2] Stephen G. Pulman University of Cambridge Computer Laboratory,
and SRI International, Cambridge April 1991: To appear in

Encyclopedia of Linguistics, Pergamon Press and Aberdeen University
Press.

[3] J.H Edmondson P. Rubinfeld R. Preston and Rajagopalan, Superscalar
instruction execution in the 21164 Alpha microprocessor “IEEE micro
pp. 33-43 April 1995.

[4] Gepard DSP core, Austria Mikro Systeme International 2000 Online on
http://asic.amsint.com/databooks/digital/gepard.html.

[5] A.V. Aho M.Ganapathi and S.W.K Tjiang “code Generation using tree
matching and dynamic Programming”. ACM Trans Program Lang.
Syste.Vol 11, no. 4, pp, 4911-516 2009.

[6] About Ghazaleh N, Childres B, Mosse D, Melhem R, Craven M.
Collaborative Compiler OS power management for applications. TR-
02-103, 2002 http://www.cs.pitt.edu compiler design.

[7] Azevedo A Issenin I, Cornea R, Gupta R, Dutt N, Veidenbaum A,
Nicolau A dyamic voltage scheduling using Program Design
automation and test in Europe 2005.

[8] Rajan, A; Joshi, B.K.; Rawat, A; Jha, R.; Bhachavat, K., “Analysis of
process distribution in HPC cluster using HPL.” 2nd IEEE International
Conference on Parallel Distributed and Grid Computing(PDGC), 2012,
pp.85,88, 6-8 Dec. 2012 Solan India.

[9] J. Cohen, Stuart Kolodner; “Estimating the Speed up in Parallel
Parsing”; IEEE Transactions on Software Engineering, January 1985.

[10] M. Chandwani, M. Puranik , N.S. Chaudhari, “On CKY- Parsing of
Context Free Grammars in Parallel”; Proceedings of the IEEE Region
10 Conference, Tencon 92, Melbourne Australia, pp. 141- 145, 1992.

[11] Valeriy Shipunov, Andrey Gavryushenko, Eugene Kuznetsov,”
Comparative Analysis of Debugging Tools in Parallel Programming for
Multi-core Processors” CADSM’2007, February 20-24, 2007, Polyana,
UKRAINE IEEE.

[12] Mary Hall, David Padua and Keshav Pingali,”Compiler Research:The
Next 50 Years”, Communication of the ACM Feb 2009,Vol. 2.

[13] Amit Barve and Dr. Brijendra Kumar Joshi;”A Parallel Lexical
Analyzer for Multi-core Machine”; Proceeding of CONSEG-2012,CSI
6th International confernece on software engineering; pp 319-323;5-7
September 2012 Indore,India.

[14] Amit Barve and Brijendrakumar Joshi, "Parallel lexical analysis on
multi-core machines using divide and conquer," NUiCONE- 2012
Nirma University International Conference on Engineering , pp.1,5, 6-8
Dec. 2012. Ahmedabad, India.

 [15] Amit Barve and Brijendrakumar Joshi; “Parallel lexical analysis of
multiple files on multi-core machines”; International Journal of
Computer Applications; Vol. 96, No.8, June 2014.

 [16] David R. Butenhof, “Programming with POSIX Threads”, Addison-
Wesley Longman Publishing Co., USA 1997.

 [17] Rajan, A; Joshi, B.K.; Rawat, A; Jha, R.; Bhachavat, K., "Analysis of
process distribution in HPC cluster using HPL," 2nd IEEE International
Conference on Parallel Distributed and Grid Computing (PDGC), 2012,
pp.85,88, 6-8 Dec. 2012 Solan India.

[18] Rajan A., Joshi B.K., Rawat A., Gupta S.”Analyitical Study of HPCC
Performance Using HPL”;International Journal of Computer Science
and its Applications, Vol. 2, no. 1, p. 47-49, Apr. 2012.

[19] Rajan A., Joshi Brijendra Kumar, Rawat A.”Critical Analysis of HPL
Performance under Different Process Distribution Patterns”.CSI 6th
International Conference on Software Engineering (CONSEG- 2012),
DAVV, Indore, Sep., 5-7, 2012

[20] Chuanpeng Li, Chen Ding, Kai Shen;”Quantifying the cost of context
switch”,ExpCS’07’ Proceeding of the 2007 workshop on Experimental
computer science; article 2; ACM New York USA;2007.

MASTER

 a=2,b=4,c

 LDA a

 MUL b

 STA c

OUT

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 342-346

www.ijcsit.com 346

